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Organic–inorganic hybrid metal halide perovskite materi-
als  have  attracted  much  research  interest  over  the  past  dec-
ade because of their unique electrical and optoelectronic prop-
erties,  e.g.,  long  diffusion  length,  high  charge  mobility,  low
binding  energy,  high  absorption  coefficient,  and  low  density
of  trap  states.  The  power  conversion  efficiency  (PCE)  for  the
perovskite  solar  cells  (PSCs)  rapidly  increased  from  3.8%  to
25.5%[1, 2].  However,  the  long-term  operational  stability  of
PSCs in the ambient condition is intrinsically poor against the
humidity,  heat  and UV-light,  which limits  its  further  commer-
cialization.  The  poor  stability  of  PSCs  originates  from  the  in-
crease  of  the  vibrational  motion  of  MA+ ion  inside  the  metal
halide [MX6]4− octahedra under the internally  generated heat
and long-term heat soaking[3]. Meanwhile, the water could ac-
celerate  the  decomposition  of  methylamine  and  thereby
cause the irreversible degradation of perovskites when the per-
ovskites  are  in  the  ambient  environment  with  relatively  high
humidity (˃ 50%).  Various approaches,  such as compositional
engineering[4, 5], interfacial engineering[6, 7], and solvent engin-
eering[8, 9] were utilized to overcome this problem.

The  low  dimensional  (LD)  perovskites,  including  2D,  1D,
and  0D  perovskites,  derive  from  the  3D  perovskites,  which
are  structurally  cut  in  slices  through  employing  hydrophobic
organic  ammonia[10].  It  should  be  noted  that,  the  LD  per-
ovskite  materials  defined  here,  are  quite  different  from  the
morphological  definition  of  2D  nano-sheets,  1D  nano-wires,
and  0D  nano-particles  (Fig.  1(a)).  In  2D  perovskites,  the
[MX6]4− octahedra  are  connected  by  large  organic  cations  in
the form of layered or corrugated sheets (Fig. 1(b)). The dimen-
sionality  of  perovskite  will  be single  layer  (n = 1),  double  lay-
ers  (n =  2),  triple  layers  (n =  3)  or n =  ∞,  with  corner/edge/
face-shared  octahedra.  A  2D  layered  perovskite  thin  film  has
high  orientation  and  moisture  stability[11].  However,  PSCs
with 2D perovskite active layer perform high stability but a rel-
atively  poor  PCE  due  to  anisotropic  transport  property  and
large optical bandgap, which relate to its layered structure[12].
In  1D  perovskites,  [MX6]4− octahedra  are  connected  in  face-
sharing,  corner-sharing  or  edge-sharing  chain  surrounded  by
organic  cations,  and  [MX6]4− octahedra  in  0D  perovskites  are
completely  isolated  by  organic  cation  from  each  other.  Cur-
rently,  the 1D and 0D perovskite materials  are widely used in
luminescent devices due to their unique photophysical proper-
ties such as large Stokes shifts and broad emission.

Overall, 3D perovskite solar cells exhibited remarkably im-
proved  PCE.  However,  the  development  of  more  stable  per-
ovskites is  required to achieve solar modules.  Clearly,  LD per-
ovskites with 2D, 1D and 0D structures present superior stabil-
ity  than  3D  perovskites.  In  this  scenario,  LD/3D  hybrid  per-
ovskites  might be the ideal  candidates for  solar  cell  commer-
cialization.  However,  as  the  long  chains  of  organic  cations  in
LD  perovskites  may  prevent  charge  transport,  the  efficiency
of LD perovskite solar cells is still lower compared with 3D per-
ovskite  solar  cells.  The  enhanced  stability  sacrifices  the  effi-
ciency.

Recently, researchers have focused their study on the LD-
3D  heterojunction  perovskite  solar  cells.  Snaith et  al. repor-
ted the formation of 2D–3D hybrid perovskite platelets. The in-
terspersed  2D  layered  perovskites  between  highly  orientated
3D perovskite grains suppressed non-radiative charge recom-
bination and exhibited an average stabilized PCE of 17.5%[21].
Li et al. realized 0D–3D core-shell CsxFA1–xPbI3-[GaAA3]4 (0 < x
< 1) hybrid perovskites (Figs. 2(a)–2(c)),  which remarkably en-
hanced the long-term stability of perovskite solar cells while re-
maining  high  efficiency  by  using  an  effective  passivation[19].
Fan et  al.  obtained  a  series  of  1D  and  1D–3D  hybrid  per-
ovskite  materials.  The  intrinsic  properties  of  thermodynamic-
ally stable yet kinetically labile 1D materials alleviated the lat-
tice mismatch and passivated the interface traps in heterojunc-
tion  region.  The  1D–3D  hybrid  perovskite  solar  cells  presen-
ted self-healing capabilities and long-term thermal stability[5].
Likewise,  Liu et  al.  made  a  1D  PbI2-bipyridine  (BPy)  (II)  per-
ovskite,  which  was  further  utilized  to  prepare  1D–3D  PSCs.
The  solar  cells  were  stable  under  electric  field,  humidity  and
light soaking. The good lattice-matching in 1D–3D heterojunc-
tion  domains  accounts  for  the  stability  (Fig.  2(d)).  Import-
antly,  the  negative  ion  migration  was  restricted  by  blocking
the migration channel and a 21.18% PCE was obtained[17].

By hybridizing LD perovskites with 3D perovskites, the sta-
bility  and  PCE  of  solar  cells  can  be  simultaneously  improved
due to the passivation of grain boundaries and the minimiza-
tion  of  the  problems  related  to  the  hygroscopic  nature  and
thermal  instability  of  3D  perovskite  materials.  Using  LD  per-
ovskite  layers  as  barriers  against  water  penetration  into
device  certainly  has  potential  in  improving  the  device  stabil-
ity. However, improving stability often sacrifices carriers trans-
port and device efficiency[22].  Building charge transport chan-
nel via organic  groups  with  π–π  conjugate  structure  is  vital
for  improving  charge-transport  properties  in  low-dimension-
al  perovskites[23].  Organic  groups  with  π–π  conjugate  struc-
ture,  e.g.,  quinoline,  pyridine,  thiophene,  etc.,  would  estab-
lish  effective  carrier  transport  tunnel  between  inorganic  and
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organic domains, and between organic and organic domains,
thus  solving  the  carrier  transport  issue  in  LD-3D  hybrid  per-
ovskite solar cells.

In  summary,  the  introduction  of  suitable  amount  of  LD
perovskite  with  π–π  conjugate  structure  can  construct  favor-
able  carrier-transport  channel  in  the  heterojunction  region
between 3D and LD perovskites,  and improve the  stability  of
3D  perovskites.  By  balancing  the  trade-off  between  effi-
ciency  and  stability,  the  LD-3D  heterojunction  perovskites
can gift  solar cells with both high efficiency and stability.  The

development  of  multidimension-coupled  perovskites  will
provide  a  new  approach  for  developing  highly  efficient  per-
ovskite solar cells.
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Fig. 1. (Color online) (a) The structure of hybrid lead iodide perovskite homologous semiconductors with 0D, 1D, 2D and 3D. (b–d) Chemical struc-
ture of the A-site cations reported in LD/3D perovskite solar cells[5, 13-20].

 

1D-(400)

(400)-CBM (001)-CBM

(010)-CBM

(001)-CBM

(200)-CBM

(220)-CBM

3D-(200)

12.7 Å

16.9 Å

19.0 Å

1D-(220)

80°

16.9 Å

83°

1D

3D

3D

1D

3D

1D-(400)
1D-(220)

VerticalHorizontal

3.5°

48°

3D-(200)

1D-(400)

25.3 Å

1D-(220)

(020)

(020)

4.1 Å

3.1 Å
(200)

Cs
x
FA1-xPbI3 perovskite 

[GaAA3]4

2 nm

[GaAA3]4

Cs
x
FA1-xPbI3

perovskite
Core

Shell

5 nm 2 nm

130c

210c

120c

350O

302O
052O

(a)

(d)

(c)(b)

 

Fig. 2. (Color online) (a–c) HRTEM images of core-shell structure. Inset of the Fourier transforms of corresponding lattice fringe[19], reproduced by
permission of The Royal Society of Chemistry. (d) Schematic view of the heterojunction microstructure of 1D@3D halide perovskite. Reproduced
with permission[17], Copyright 2020, The Wiley Publishing Group.
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